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IGNITING A PLANE WEDGE BY A GLOWING SURFACE* 

V.S. BERMAN and V.M. SHEVTSOVA 

A method is proposed for the asymptotic analysis of qualitative characteristics of 
the process of igniting rough surface regions occupied by a reacting medium. The 
problem of igniting a plane wedge whose faces are maintained at constant temperature 
with the roughness of reacting surfaces taken into account, is taken as the model. 
The chemical reaction activation energy is assumed fairly high, as is the case with 
the majority of exothennic reacting media. 

In classical problems of the thermal theory of ignition by a glowing surface the multi- 
dimensionality of combustible substance specimens is not taken into account /1,2/. It is 
usual to consider the ignition of a half-space occupied by the reacting medium whose surface 
temperature is maintained constant. However in real systems the ignited surface of the react- 
ing medium can contain various irregularities (protrusions, cracks, etc.) that play the part 
of leaders or outsiders in the process. The conditions for igniting surfaces with protrusions 
are more favorable than for those that have plane /smooth/ surfaces, since at the protrusion 
side faces the heat flux is directed into the latter. The effect of recesses in the reacting 
medium surface is opposite. 

1. Basic equations. Consider a two-dimensional region of the form of a wedge with an 
apex angle CL, filled by a substance susceptible to chemical exothermic transformations. Con- 
stant temperture T, is maintained at the wedge surface. Let us determine the ignition chara- 
cteristics and temperature distribution in the wedge-shaped region occupied by the reacting 

substance. Neglecting the reagent burnout, we define the problem of temperature distribution 
at the corner as follows: 

(1.1) 

0(o,q,‘p)=e(f,~,cp) -:o (1.2) 
8 (t, l), 0) = 0 (t, '1, r/.) : : 

cj= T-- 7. I_&, P 

T,-- ‘1--x 

where x' and y' are orthogonal Cartesian coordinates with the x'axis coincident with one of 
the wedge sides,a is theapex angle, 0' and cp are polar coordinates, 1' is the time, r the 

temperature, p the density, c the specific heat, il the thermal conductivity, Q the heat of 
combustion, E the activation energy, k the preexponentila factor, and R is the gas constant. 

Let us assume that O.< E<I and RI',lE <t.We seek a solution of system (l.l), (1.2) of 

the form 

8 (t. n. 'F? E) = (+i (1.1, cp) + u (L, 11, cp, s) (1.3) 

where 8iis a solution of form /3/ 

where Jr(z) is the Bessel function, of the inert problem *,/at = A(+, with initial and bound- 

ary conditions (1.2). 
When a = n/2 (v = T), we have 
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ei (f, x, Y) = 2 - erf (X/2 vi) erf (Y/Z v/i) 
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(1.4) 

erf (2) = +$ $ esp (- 3) ds 
0 

Function uis the solution of the problem 

+Au+E-lesp 
[ 
(I + 5) (8, + u - 0 1 (1.5) 
E(0< + Uf0) 

U (0, n, cp) = .!.J (t, OD, cp) = U(L'1,O) = L'(L 11, a) = 0 

The reaction process is most intensive when O<a < n, hence we investigate the domain 
of parameter variation 1 <v. 

When v = 1, the problem reduces totheinvestigation of igniting by a glowing plane sur- 
face which was carried out in /1,2/. The asymptotic analysis of this problem (*I shows that 
the form of solution of (1.11, (1.2) changes when t>li, where 

ti (E) = (2JC)-' + 0 (1) (1.6) 

This time is taken as the ignition time. A similar situation arises also when 2 <v at 
a fairly large distance from the wedge tip. 

It is most natural to take as the wedge ignition time the instant at which the tempera- 
ture at any point of the wedge interior exceeds unity. 

Acceleration of the process is possible in the neighborhood of the tip. As implied by 
the form of the last term in the right-hand side of Eq.cl.51, it has an appreciable effect 
only when (ei - 1)~~l = 0 (1). 

With fixed t and 'p and n -, 0 we have 

(1.7) 

where r(t) is the gamma function. 
We introduce in the tip neighborhood the new three-dimensional variable r = n/e, and 

shall consider the process in times of the order of 6"(e) introducing for this the new time 
variable 

T = ts (E), 6 >> 1 (1.8) 

We seek in this region the solution iY(t,n,q) of the form 

U = EU, (T, r, cp) + E'lJ, (z, r, rp) + 0 (19) 

From (1.5) and (l-7)-- (1.9) follows that 

s'S arr,zr-'A c )- , + ‘s-1 esp[U, -~~r~si~~(v~p)~~-~G~ $1 

+;4++ (L+vz 

(1.9) 

(1.10) 

If the chemical reaction is to have an appreciable effect in the chemical reaction devel- 
opment, i.e. 
select 

the last term in the right-hand side of Eq.(l.lO) is O(l), it is necessary to 

6 (s) = s-a+n/v (1.11) 

Note the considerable dependence of the characteristic time of the chemical reaction pro- 
cess at the wedge tip on the tip angle. From (1.10) we have 

*) V.S. Berman, Certain problems of propagation of the zone of isothermic chemical reactions 
in gaseous and condensed media. 
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:\,fJ, i- C’7.p [U, Ur’ till V(pI 0 :1.i, 

The solution I'J', (T. r. v) must satisfy the boundary condltlor: when I . 0 ‘2nd rc:ll,ll I, 1:. ,i.::,:- 
ed as r-b 00. This condition is in agreement with the expectation on physical (:(llisl,~~r;1:.1..,:::. 

that the most intensive chemical heating occ~lrs in the region silrroundlng the wcdqtr ! 111. I t 
is not possible to require tin sol:ltion of Q. il.12: to \'ar:lsh when v 0 and ', 'A. sL,:<JC 
the expansion (1.7) and, consequently, :I. LO) are valid 111 n regio:l that cxcludcs any ~PASCI:I- 
ably close approach to the wedge faces. 

2. Solution of equation (1.12). In this equdtlon time 1s a +ramet.c:r . iiv l.ntriu- 
uce the new function 

I' (T. 1. (4') I!, .. (!~'>llI \I; 

Since the second term in the right-hand side of (2.1: is a harmonic 

As was first disclosed by Liouville /4/, this equation has d general 
ous forms are given in severe: publlcatlons (see e.g., /':-7/j. Here we 
tion which differs from the knowr. ones, anti w:hich for the solution. I', of 

expression 

".l, L 

function, we have 

(2.2) 

solution which varl- 

use a form of sol~z- 
Eq. (1.12) yields the 

(2.3) 

where R (T, r. CF) 1s a harmonic fur:ction. As shown I:: ;a,/, when A,:’ 0 then 

.\. (In T’,R I ) 0 <?.,I, 

Identity (2.4) proves that expression (2.j; 1s a solution of Eq.(1.12:. I t !S, * :IllC, 
necessary to find a harmonic function. K (T. I'. (1,) such that when r.-. 0 and r -. I>O, the con:di!-.lons 

imposed on U, (~:,r. q) are satisfied. 
Consequently, the solution of the boundary val.le sroblen for the nonlInear equation (2.2) 

(or (2.12)) reduces to finding a harmonic function t;iat satisfies the nonlinear boundary COP 
ditions, a problem which can be reduced to solving a nonlinear integral equation. 

Let us determine the approximate soll;tion of Eq.(Y!.li. We seek for ,p a soldtlon In the 

form of series 

a!T,r,lr)=.4(T) : /~fTllllr C(T)I( : \' IG,,cr)sllr iv,~~j F_,(T)cos(v~c~)] r'\' (L.',J 
I I 

where A (1). /i (T), I‘ (1). C;+,(T). I:,,(r) clre unknown functions that arc to be determined usin<; tihe -. 
respective boundary conditions. Taking into accoant that 

; ,c ! 33. Ill (CtI ,f ; :’ 1 III :! ‘1 (1) 

r - . 03, 111 I v’a /? CollLt’ lil I 

we obtain 

F,, (T) I). i I. 2.. ., C,! : 0. I 1. 2. 3. 

Consider the particular case of \' 2 (T : n:?). Restricting expression (2.5) to :.hree 

terms, viz. 

c (1, I’. 0) A (T) R (7)111 r : r*D (Tjsiu (20:) ;;.o; 

1 v,g I? H* (T)T.Z I 2H (r)D (rlsill (Z(F) .‘rD?(~)r* 

and setting r -- 0~: from (2.6) and (2.3! we obtain 

I/, (T. r -> 00. (p) = fn (T) -- 20 (T)]~*SIII &I) L 2 I1 -- /I (T)] III r :1 III 2 2A (5) -7 In I'&' (r)l d- o (I) i?.iJ 

To satisfy the condition of boundedness of I!,it is necessary to set 

0 (T) (1 (T) “, /I \I\ 1 
,‘I !i, ,‘. . d. 

Let us now satisfy the condition when r-p 0. From c2.J) and (2.6) we have 

(/, (T, r -, 0, qJ) 31112 2.4 (T) ’ 0 (1) (2.9) 
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from which 

From (2.7) we have 

U, (T, r 7 00. r&J) ::: "In 18a (z)l (2.12) 

It is obvious on physical considerations that function ld't (T, r, cp)which defines chemical 

heating up must be nonnegative. Analysis of solution (2.3) with function :'(r.f'.r[!)of the form 

(2.11) shows that this condition is satisfied when 

Fig.1 

il (T) > 1:s 

Y 

2 4 

Fig.2 

(2.13) 

Since I( (s) -2 i.'(z.zr) when v =2, using inequality (2.13) we conclude that solution (2.3) with 
function e{+. t, IF) determined by (2.11) is nonnegative when 

r-.co,OCT_ .<a (2.14) 

In this case we take as the characteristic ignition time the instant at which the qualit- 
ative change of solution 

takes place. 
Thus the process of igniting in a region of the form of a straight angle is substantially 

faster than that of igniting a plane half-space (E< 1). i.e. 

t[ (v --= I):lj (1 2) = t-"8 > 1 (2.16) 

Consequently, irregularities of the ignited surface, whose dimensions represent several 
characteristic zones of steady heating, can play the determining part in the development of 
the ignition process. 

Note that solutions (2.3) and (2.11) do not satisfy the conditions at wedge faces. In 
these regions it is necessary to introduce new "stretched" variables that are characteristic 
of the given boundary layer, and construct a solution that satisfies boundary conditions and 
can be merged with solution (2.3). 

An attempt at satisfying both conditions as r-33 and r=O in the case of V#Z and 
1~1 using formula (2.5) proved unsuccessful. This is explained by the evident necessity to 
introduce at the wedge tip a complementary "stretched" region, merge it with solution (2.3), 
and have the condition at r = 0 satisfied. The region was not investigated above. 

To check the results obtained by asymptotic methods, the input problem (l-5), (1.6) was 
solved numerically with a = n/2 . Several isotherms are represented in Figs.land2 at various 
instants of time. The temperature distribution prior to the instant of ignition is shown in 
Fig.1 with E-I = (10. Curves I--P correspond to @ = 0.9;0.8; c).i:O.fi. The behavior of isotherms 
after the instant of ignition are shown in Fig.2, where curves 1-5 correspond to 8 = 1.1,0.7,O.S, 
0.9, O-5. The instant of ignition is represented by closed isotherms which surround the hottest 
region inside the wedge. The time of formation of that "hot point" obtained by numerical 
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methods for finite values of E-'=0(201is in agreement 3s to the 
order of magnitude with the characteristic time (2.15). The 
dependence of ignition time on ~-1 obtained by numerical and 
asymptotic method is shown in Fig. 3 (where I*== IO~T,) respect- 
ively, by curves 1 and 2. 

The good agreement between the two solutions indicates 
that the asymptotic method enables us to obtain not only a 
qualitative picture of the phenomenon but, also, to observe 
quantitative changes. 
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